AMS131-01 - MIDTERM
Thursday 3rd May, 2018.

- You must explain all answers and/or show working for full credit.
- This exam is closed book, but you may use one 8.5 by 11 piece of paper with notes, and a calculator.
- You may leave answers in terms of Binomial Coefficients, suitably simplified.
- This exam is to be completed individually.

1. [3 points] If \(k \) people are seated in a random manner in a circle containing \(n \) chairs \((n > k)\), what is the probability that the people will occupy \(k \) adjacent chairs in the circle?

There are \(\binom{n}{k} \) ways of sitting \(k \) people in \(n \) chairs.

Because the chairs are in a circle, \(n \) of them have the \(k \) occupied chairs being adjacent.

\[
\Rightarrow \text{Prob.} = \frac{n}{\binom{n}{k}} = \frac{(n-k)!k!}{(n-1)!}
\]

2. [2 points] If \(n \) letters are placed at random in \(n \) envelopes, what is the probability that exactly \(n-1 \) letters will be placed in the correct envelopes?

If \(n-1 \) letters are in the correct envelopes, then all \(n \) are in the correct envelopes.

\[
\Rightarrow \text{Prob. that exactly } n-1 \text{ are in the correct envelope is zero.}
\]
3. [5 points] Three players, A, B, C take turns tossing a fair coin. Suppose that A tosses first, B tosses second, and C tosses third; and suppose that this cycle is repeated indefinitely until someone wins by being the first player to obtain a head. Determine the probability that each player will win.

For A to win, either they lose a H, or B and C both lose T, with the structure:

\[P(A) = \frac{1}{2} + \left(\frac{1}{2}\right)^3 \times P(A). \]

\[P(A) = \frac{1}{2} + \frac{1}{8} P(A) \quad \Rightarrow \quad P(A) = \frac{4}{7}. \]

For B to win, (A throws T and B throws H) or (all three throw T and we restart).

\[P(B) = \frac{1}{2} \times \frac{1}{2} + \left(\frac{1}{2}\right)^3 \times P(B) \quad \Rightarrow \quad P(B) = \frac{2}{7}. \]

\[P(C) = 1 - \frac{4}{7} - \frac{2}{7} = \frac{1}{7}. \]

4. [3 points]

(a) A fair die is rolled. Find the expected value of the roll.

\[E[X] = \sum x \times P(X=x) = (1 + 2 + 3 + 4 + 5 + 6) \times \frac{1}{6} = 3.5 \]

(b) Four fair dice are rolled. Find the expected total of the rolls.

\[Y = x_1 + x_2 + x_3 + x_4 \quad \text{where each } x_i \text{ is an outcome of roll } i. \]

\[E(Y) = E(x_1 + x_2 + x_3 + x_4) = 4 \times E(x_1) \]

\[= 4 \times 3.5 \]

\[= 14 \]
5. [5 points] In one of the homework problems, we considered a mixture distribution, where \(F_1 \) and \(F_2 \) are CDFs, \(0 < p < 1 \), and \(F(x) = p F_1(x) + (1 - p) F_2(x) \).

(a) What is the expected value of a random variable that follows \(F(x) \)?

\[
\mathbb{E}(x) = \int x \, f(x) \, dx = p \int x f_1(x) \, dx + (1 - p) \int x f_2(x) \, dx
= p \, \mathbb{E}_1(x) + (1 - p) \, \mathbb{E}_2(x).
\]

There are times when using the Poisson distribution to model the probabilities of the number of events underestimates the probability of zero events. In these cases a zero inflated Poisson distribution is used, which has PMF

\[
P(Y = 0) = p + (1 - p)e^{-\lambda} \quad (1)
\]

\[
P(Y = k) = (1 - p) \frac{\lambda^k e^{-\lambda}}{k!}, \quad k > 0 \quad (2)
\]

where \(0 < p < 1 \).

(b) What is the expected value of \(Y \)?

Comparing to part (a), we have that distribution 1 is a discrete PMF with \(P(X = 0) = 1 \), and distribution 2 is a Poisson.

\[
\Rightarrow \mathbb{E}(X) = p \times 0 + (1 - p) \lambda
= (1 - p) \lambda.
\]

6. [2 points] Let \(X \) be a discrete random variable with support \(-n, -n + 1, \ldots, 0, \ldots, n - 1, n\) for some positive integer \(n \). Suppose that the PMF of \(X \) satisfies the symmetry property \(P(X = -k) = P(X = k) \) for all integers \(k \). Find \(E(X) \).

\[
E[X] = \sum x \, p(x = x)
\]

Because the support is symmetric, and \(p(x = -k) = p(x = k) \),

the expected value is \(\boxed{0} \).
7. [6 points] Suppose that the random variables X_1, \ldots, X_n form n Bernoulli(p) trials. Determine the conditional probability that $X_1 = 1$ given that

$$\sum_{i=1}^{n} X_i = k \quad (k = 1, \ldots, n).$$

$$P(X_1 = 1 | \sum_{i=1}^{n} X_i = k) = \frac{P(X_1 = 1 \text{ and } \sum_{i=2}^{n} X_i = k-1)}{P(\sum_{i=1}^{n} X_i = k)}.

= \frac{P(X_1 = 1) \cdot P\left(\sum_{i=2}^{n} X_i = k-1\right)}{P\left(\sum_{i=1}^{n} X_i = k\right)} = \frac{p \cdot (n-1) \cdot p^{k-1} \cdot (1-p)^{n-1-(k-1)}}{\binom{n}{k} \cdot p^k \cdot (1-p)^{n-k}} = \frac{n-1 \cdot p^{k-1} \cdot (1-p)^{n-1-k}}{n \cdot \binom{n}{k}} = \frac{k}{n}.

8. [4 points]

(a) Independent Bernoulli trials are performed, with probability $1/2$ of success, until there has been at least one success. Find the PMF of the number of trials performed.

$$X - \text{number of trials}$$

$$\mathbb{P}(X = n) = (\frac{1}{2})^{n-1} \cdot \frac{1}{2} = (\frac{1}{2})^n.$$

(b) Independent Bernoulli trials are performed, with probability $1/2$ of success, until there has been at least one success and at least one failure. Find the PMF of the number of trials performed.

$$Y - \text{number of trials, for } Y = n$$

$$\mathbb{P}(Y = n) = (\frac{1}{2})^{n-1} \cdot \frac{1}{2} + (\frac{1}{3})^{n-1} \cdot \frac{1}{2} = \left(\frac{1}{2}\right)^{n-1} \quad n \geq 2.$$
9. [3 points] A continuous random variable is said to have the *Exponential Distribution* with parameter \(\lambda \), where \(\lambda > 0 \), if its PDF is

\[
f(x) = \lambda e^{-\lambda x}, \quad x > 0
\]

and CDF is

\[
F(x) = 1 - e^{-\lambda x}, \quad x > 0.
\]

The Exponential Distribution is often used to model *waiting times*, i.e. \(f(x) \) is the PDF for the waiting time \(x \), until something happens.

Using the definition of conditional probability, show that the Exponential Distribution has the *Memoryless Property*, i.e. that

\[
P(X \geq s + t | X \geq s) = P(X \geq t).
\]

(i.e., if you have already waited time \(s \), the probability that you will have to wait another \(t \) minutes is exactly the same as the probability of having to wait \(t \) minutes if you haven’t waited at all.)

\[
P(X \geq s + t | X \geq s) = \frac{P(X \geq s + t \text{ and } X \geq s)}{P(X \geq s)}
\]

\[
= \frac{P(X \geq s + t)}{P(X \geq s)}
\]

\[
= \frac{1 - F(s + t)}{1 - F(s)} = \frac{e^{-\lambda(s + t)}}{e^{-\lambda s}} = e^{-\lambda t} = P(X \geq t).
\]