

Name:	Section:	(day/time)	
-------	----------	------------	--

AMS131 - Quiz 3

Thursday 31th May, 2018.

You must show working/explain all answers for full credit.

Some (possibly) useful results:

$$Cov(X, Y) = E[(X - E[X])(Y - E[Y])]$$

 $Var(aX) = a^2 Var(X)$

$$Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y)$$

1. Suppose that X, Y, and Z are three random variables such that Var(X) = 1, Var(Y) = 4, Var(Z) = 8, Cov(X, Y) = 1, Cov(X, Z) = -1, and Cov(Y, Z) = 2. What is Var(3X - Y - 2Z + 1)?

$$Var (3x-Y-2Z+1) = 9 Var (x) + Var (y) + 4 Var (z)$$

$$+ 2 Cov (3x,-y) + 2 Cov (3x,-2Z)$$

$$+ 2 Cov (-Y,-2Z)$$

$$= 9 Var (x) + Var (y) + 4 Var (z)$$

$$= 9 + 4 + 32$$
 $-6 + 12 + 8$

(1).

2. A fair die is rolled, and then a coin with probability p of Heads is flipped as many times as the die roll says, e.g., if the result of the die roll is a 3, then the coin is flipped 3 times. Let X be the result of the die roll and Y be the number of times the coin lands Heads. Find the joint PMF of X and Y. Are they independent?

$$P(X,Y) = P(Y|X)P(X).$$

$$P(Y|X) = Pidbod y successes in x binals$$

$$= {\binom{x}{y}} P^{y} {\binom{1-p}{x-y}}^{2x-y}$$

$$P(X,Y) = \frac{1}{6} {x \choose y} P^{y} (1-P)^{x-y}$$

$$P(X,Y) = \frac{1}{6} {x \choose y} P^{y} (1-P)^{x-y}$$

$$P(X,Y) = \frac{1}{6} {x \choose y} P^{y} (1-P)^{x-y}$$

are not undependent P(Y|X) depends on x

3. Random variable X has the uniform distribution on the interval [-2,2] and $Y=X^6$. Show that X and Y are uncorrelated.

E[X] = 0 by symmetry

(+) = [xx] = E[x+]

Xt is an odd function => E[x7] =0 as the range is symmetric

Hence

and p(x, y) = 0 ie vacorrelated.